Quaternion

  • Contatto vendite
  • Trials

Apply rotation in three-dimensional space through complex vectors

Quaternions are vectors used for computing rotations in mechanics, aerospace, computer graphics, vision processing, and other applications. They consist of four elements: three that extend the commonly known imaginary number and one that defines the magnitude of rotation. Quaternions are commonly denoted as:

q = w + x*i + y*j + z*k where i² = j² = k² = i*j*k = -1

This rotation format requires less computation than a rotation matrix.

Common tasks for using quaternion include:

  • Converting between quaternions, rotation matrices, and direction cosine matrices
  • Performing quaternion math such as norm inverse and rotation
  • Simulating premade six degree-of freedom (6DoF) models built with quaternion math

For details, see MATLAB® and Simulink® that enable you to use quaternions without a deep understanding of the mathematics involved.

Examples

Software Reference

See also: Euler angles, linearization, numerical analysis, design optimization, real-time simulation, Monte Carlo simulation, model-based testing