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Abstract 

Modern mixed-signal ASIC designs, such as SerDes, require co-development of analog and digital 

subsystems that interact in increasingly complex ways. The challenges of today's silicon 

processes, as well as advancing performance targets, escalate analog design complexity. This, in 

turn, increases analog design time and introduces design cycle uncertainty. Moreover, analog 

design tends to lag digital design, which impedes digital validation and delays top-level mixed-

signal validation. 

 

For most mixed-signal designs, system models are used for architecture definition and design 

space exploration. In fact, analog specifications are derived from some form of system-level 

design exploration. Hence, the system models already embody the required analog 

functionality, configurability, and performance. We show that, with proper structuring, the 

system models can be used to automatically generate SystemVerilog models for analog 

components. Paired with netlistable pin definitions and synthesizable digital functionality, the 

core analog functionality from the system model can be used to construct run-time-configurable 

SystemVerilog analog models. 

 

The availability of these automatically generated analog system models enables a shift-left of 

the validation effort to earlier in the workflow, such as during design exploration. This shift is 

accomplished by automating SystemVerilog model generation, while also allowing initial 

SystemVerilog models to be based on the architectural or design exploration models from which 

design specifications are derived. Furthermore, as the analog design evolves, and circuit 

simulation data becomes available, the system models can be refined and updated to match 

simulated analog behavior. This automation opens a path for re-generating updated 

SystemVerilog models throughout the project lifecycle: as the analog and digital designs evolve, 

implementation issues are addressed, and system-level design trade-offs are made and 

convergence is achieved. 

 

The paper uses a common SerDes analog block, a continuous-time linear equalizer (CTLE), to 

demonstrate the proposed workflow. We begin with a white-board CTLE design, which is initially 

based on the 802.3ck reference COM receiver [1,2] CTLE specification. The COM-based CTLE 

model is augmented with a CTLE start-up digital calibration engine and the required digital 

control logic. The system model-to-SystemVerilog model export flow is then described, resulting 

in a design-specification-accurate CTLE model that can be used to shift-left design validation. 

 

Next, a circuit model for the CTLE is presented and its circuit behavior is quantified using a 

targeted set of common analog circuit simulations. Finally, the simulation results are used to 

augment and refine the CTLE system model to match the circuit behavior. An updated, circuit-

accurate, SystemVerilog model is automatically re-generated, reusing the presented model 

generation flow. 
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1 Introduction 

Today’s high-speed serial transceivers are complex systems that bring to bear the best a 

technology process has to offer to achieve 112 Gb/s transmission rates, and beyond. A SerDes 

transceiver leverages analog- and digital-signal processing to compensate for channel loss, 

reflections, and cross talk. For 112 Gb/s operation, most mid- to long-reach SerDes rely on ADC-

based receivers [7,8], such as the one shown in Fig. 1. In an ADC-based receiver the continuous-

time linear equalizer (CTLE) provides analog-signal processing, while the bulk of the signal 

processing is performed in the digital domain via the feed-forward equalizer (FFE) and the 

decision-feedback equalizer (DFE). The analog- and digital-signal processing paths are co-

optimized to achieve the required performance targets, such as power, area, and link reach.  

The design of a high-speed serial transceiver is a monumental undertaking, requiring 

collaboration across a multi-disciplinary team, a multi-year development cycle, and a significant 

monetary investment. The multi-disciplinary nature of SerDes design requires involvement from 

system architects, analog designers, digital designers, layout designers, firmware engineers, 

signal integrity engineers, and other teams. Achieving a return on investment requires on-time 

delivery of a fully working and inter-operable transceiver in as few design iterations as possible – 

ideally one. 

Designing and validating such a complex system necessitates the judicious use of models 

[10,12]. This paper specifically focuses on the use of models for overall system validation, 

including both system models that evaluate the end-to-end link performance, and models used 

for individual block functionality to validate a mixed-signal design. We will show that these 

behavioral models can be automatically generated earlier in the design cycle than with 

conventional modeling approaches. This enables a shift-left in the design validation effort. 

Section 2 introduces the different models that are used during a SerDes development cycle, 

  

Fig. 1 – An ADC-based SerDes receiver consists of custom analog blocks (CTLE & VCO), mixed-signal 

blocks (ADC), custom digital blocks (4:64 demultiplexer), and synthesized digital (FFE, DFE, and 

CDR) working together to equalize channel losses and recover transmitted data. 
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which represent the different levels of representation of the SerDes system. SerDes systems are 

complex mixed-signal systems, thus section 3 discusses the various mixed-signal validation 

challenges.  We then discuss the typical behavioral model generation flows used, and then we 

propose an alternative methodology that allows for a left-shit for mixed-signal validation. 

Section 4 discusses modeling requirements to enable automatic behavioral model generation.  

In section 5 an architecturally accurate behavioral CTLE model is generated, which has the 

required input/output correspondence and is correlated to the underlying architectural model.  

The corresponding simplified circuit design for the CTLE is developed in Section 6, the 

architectural model is refined based on available circuit simulations, and an updated and circuit 

accurate behavioral model is automatically re-generated.  Section 7 concludes the paper. 

2 ABCs of SerDes Modeling: Model Use Cases 

As with most complex mixed-signal systems, SerDes systems use various models throughout the 

development lifecycle to drive development and aid design decisions, as shown in Fig. 2. A 

SerDes development lifecycle consists of 3 major phases: architectural definition, circuit design 

and trade-off analysis, and finally validation. The models used for each activity can also be 

grouped into 3 corresponding categories: A-, B-, and C-models. 

Architectural models (referred to in this paper as A-models) are used to evaluate potential 

architectures that can meet a given set of requirements. Architectural exploration concludes 

with a set of design specifications necessary to build the required architecture. Specifications 

are disseminated to the analog and digital teams for implementation. As the design evolves, the 

A-models should become more representative of the true circuit behavior, a necessary step 

towards performing trade-off analysis. An example of a trade-off analysis would be balancing 

out shortcomings in the analog-signal processing with improvements to the digital-signal 

processing. 

Behavioral models (referred to in this paper as B-models) are used to substitute for incomplete 

or partially complete circuits to speed up simulations, or to enable simulations of the top-level 

design. B-models are critical for testing designs in situ. They are used by analog designers in the 

 

Fig. 2 – Typical SerDes design cycle can be represented on a circle. Requirements feed the architectural 

definition, which generates a set of specifications to be met during design.  Design impediments may 

result in missed specifications, in which case design tradeoffs may need to be evaluated.  Completed 

design are validated in isolation and in situ.  In-situ validation requires the use of analog behavioral 

models for sign-off validation. 
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form of behavioral circuit element models (substituting a bandgap reference generator with a 

fixed voltage source) or in the form of Verilog-A models to model analog and/or digital circuit 

behavior. Digital designers use B-models to emulate analog functionality, as digital logic either 

controls, interacts with, or processes information generated by analog blocks.  

Circuit models (referred to in this paper as C-models1) are used by analog and digital design 

teams to enable circuit design exploration and block-level validation. These models help to 

determine if a set of design specifications are implementable or if design trade-offs are 

necessary. Design validation, as will be explained in Section 3, leverages circuit simulators and 

the underlying transistor device models, with a focus on validating the individual blocks in 

isolation. 

SystemVerilog is a popular modeling language used for generating behavioral (numerical) 

models for analog functionality. While the syntaxes of SystemVerilog and Verilog-A are similar, 

these languages are intended to be used with different simulators. Verilog-A is targeted at 

continuous-time circuit simulators, where the simulator can change the time-step dynamically 

depending on specified relative or absolute simulation tolerances.  Verilog-A is a useful analog-

centric language that can be used for modelling continuous-time systems; it is usually used to 

model small circuits or elements.   SystemVerilog is targeted at digital simulators, where the 

simulator advances time based on signal change events or fixed-time steps.2 

B- and C-models need to correlate with each other because top-level design validation is carried 

out using B-models, for analog functionality, using a digital simulator. Design teams use some 

form of top-level testing as final sign-off criteria for chip fabrication. Therefore, B-models need 

to be shown to correlate to the C-model (circuit) behavior. 

To achieve design sign-off, the completed design must ultimately operate as specified, achieve 

the desired performance targets, and be production-ready in as few design iterations as possible 

– ideally one. Achieving first-time correct functional silicon requires sufficient verification of the 

complete mixed-signal design: not just within each domain but across all design domains, and 

not just before manufacturing release (tape-out) but throughout the project lifecycle. Thus, 

mixed-signal validation is critical for SerDes mixed-signal designs. The next section reviews 

mixed-signal validation challenges. 

3 Mixed-Signal Validation Challenges 

A mixed-signal system consists of an intermix of analog and digital blocks that must work 

seamlessly together [11]. To do so, first the analog and digital blocks must be verified 

independently and in isolation; then they must be validated to work together, necessitating 

 
1 Not to be confused with the C programming language.  In this paper, C-model refers to a circuit based 

model: analog circuit design or RTL digital logic design. 
2 Verilog-AMS is a language that supports Verilog-A and SystemVerilog syntaxes. Verilog-AMS is 

intended to be run in a mixed-signal simulation environment where the discrete-time parts of the Verilog-

AMS code are simulated by a digital simulator and the analog parts by an analog simulator. 
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mixed-signal validation. A true mixed-signal simulation uses a digital simulator for the digital 

components and an analog simulator for the analog components. The two simulators 

communicate with each other, exchanging signal information across the analog/digital domain 

boundary. These mixed-signal simulations are notoriously slow, mainly because analog 

simulations are computationally expensive and because keeping the two simulators in lockstep 

while providing the implicit DAC and ADC functionality between the two simulators requires 

considerable overhead [10]. Moreover, a mixed-signal simulation requires a complete analog 

design, and completion times are increasingly difficult to predict. 

Nanoscale processes are not analog design-friendly, and transistor layout-dependent effects can 

have a significant impact on analog circuit performance, requiring re-validation and potential re-

design as layouts are completed. These design difficulties and increasing performance targets 

increase analog design completion time and uncertainty. The simulation time required for 

analog validation is yet another factor. Analog simulations are computationally expensive but 

are necessary to fine-tune and guarantee analog performance over all operating conditions and 

process corners. Analog simulators offer a multitude of analysis options for analog validation, 

and although computationally expensive time-domain simulations are used very sparingly, 

mixed-signal simulations necessitate time-domain simulations. This makes using actual analog 

circuits in mixed-signal simulations difficult because of the computational overhead and late 

delivery of analog designs. 

On the other hand, digital simulations are fast, but the configuration space is large, and because 

of the presence of finite state machines, the operational space has non-linear discontinuities 

that must be explored and validated. To be functionally validated, digital circuits require an 

input stimulus; in SerDes systems that stimulus comes from analog circuits, such as from a 

clocked comparator or an ADC, and this input must be time-domain simulated.  

Although the behavior, interfaces, and control ports of analog blocks can be captured and 

described by design specifications, it is possible for subtle details to be lost in communication: as 

an example, the polarity of differential signals is a common point of miscommunication. 

Correlated analog behavioral models are required both for digital design and validation. 

SystemVerilog analog mixed-signal models are used for analog block functionality to accelerate 

mixed-signal validation and to bridge the gap between digital- and analog-design completion. 

3.1 Typical B-model creation flows 

A B-model for an analog block can be written by a design engineer or created using an 

automated flow; the advantages and disadvantages for each approach are summarized in Table 

1. A digital engineer can create B-models, but may not be capable of capturing subtle, yet 

critical, analog behavior. An analog engineer, while very aware of subtle analog behaviors, may 

not be fluent in Verilog and may be unable to accurately capture the required behavior; 

moreover, using an analog engineer to write B-models is counterproductive to finalizing and 

validating the analog design. In either case, human-created B-models are intrinsically prone to 

transcription and description errors, and thus should be cross-checked against the analog design 
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itself, which thereby introduces overhead and additional model validation. Commercial tools to 

automatically create B-models are available but require a complete analog design (C-model) to 

characterize. 

3.2 B-models from A-models 

SerDes designs leverage system modeling for architectural design exploration and evaluation of 

the expected link performance. Initially, these A-models encapsulate the required analog and 

digital functionality. As the design progresses, the A-models are updated to reflect the changes 

and tradeoffs needed during design implementation. The initial A-models used for design 

exploration are used to drive analog and digital specifications and requirements; as such, these 

initial A-models embody the analog and digital design requirements. 

Rather than manually creating B-models, or automatically creating them upon analog design 

completion, this paper proposes automatically creating B-models based on A-models as they are 

incrementally refined during the design process, as shown in Fig. 3.  Up-to-date A-model 

functionality is integrated with connectivity information from the C-model hierarchy to create 

functional B-models.  Initially, the B-models is based on the desired analog functionality 

encapsulated by the A-models, allowing one to shift-left the mixed-signal validation effort. As 

the analog design matures and the A-models are refreshed the updated circuit-accurate B-

Table 1 - Comparison of different B-model generation methods 

Method Advantage Disadvantage 

Digital Engineer  Proficient in Verilog May not capture important yet subtle analog 
behavior 

Analog Engineer Able to generate detailed 
model 

Not Verilog-proficient nor aware of simulator 
limitations; impedes analog design progress 

B-from completed 
C-model 

Automatic model generation Analog design must be finalized; requires 
additional simulation overhead 

 

 

Fig. 3 – The design phases outlined in Fig. 2 use different models. A-models are used for design space 

exploration. C-models are used to verify that design specification targets have been met. Missing a 

design target requires a trade-off analysis to be made by providing implementation feedback into the 

A-models, which as a result become more representative of the true circuit functionality. B-models are 

used as stand ins.  
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models are re-exported based on these refined A-models.  The A-models are refreshed based on 

simulation-based characterization data (simulations arrow in Fig. 3) as it becomes available. 

4 Enabling Automatic B-Model Generation 

SystemVerilog is limited in the complexity of analog functionality that can be represented using 

the language’s constructs and syntax. However, Verilog simulators support a direct 

programming interface (DPI) that enables the use of custom languages (C, C++, etc.) to provide 

increased modeling flexibility. Nonetheless, C and C++ are low-level languages and require 

programing all required analog behavior as well as providing a programming interfacing to 

Verilog simulator API – a high-barrier to entry. On the other hand, A-models are described in 

high-level modeling languages such as MATLAB or Simulink, which offer high-level support 

packages in the form of Toolboxes and Blocksets. 

MATLAB and Simulink have supported export flows to SystemVerilog DPI since R2014b. These 

capabilities enable design teams to leverage existing high-level system models (A-models) to 

create B-models, thereby allowing them to shift-left mixed-signal validation. However, to take 

advantage of this flow, a few A-model requirements must be met. 

4.1 Requirement: Matched hierarchy 

To use existing A-models, the hierarchy of the A-model should match the C-model design 

hierarchy. The A-model hierarchy does not need to match the design hierarchy exactly, but 

rather only to the level at which a B-model export is desired. For example, a CTLE may consist of 

multiple stages, but the B-model will only be exported for the whole CTLE; thus, modeling each 

stage independently may not be necessary. As another example, an ADC implementation may 

consist of multiple analog blocks, such as amplifiers, active filters, etc., yet this level of detail 

may not be required for the B-model, nor for the A-model.  

4.2 Requirement: Stable interfaces 

For the A- and B-models to co-evolve with the design, the input/output interfaces for the system 

models need to be fixed. It is likely that the A-model uses a subset of the circuit level interfaces 

– for example, test port interfaces may be omitted – and this is not an issue, as will be shown 

later. The important thing is that the interface should be relatively stable throughout the project 

lifecycle, as is often the case because interfaces are defined as part of the design specification: 

inputs, outputs, controls, and test ports as required. 

4.3 Requirement: Fixed time-step implementation 

Time, as dictated by the Verilog simulator, is strictly increasing; hence, unlike a continuous-time 

simulator, the simulator does not check signal node amplitude changes, decrease time steps, 

nor go back in time and re-evaluate signal node changes. As such, B-models used for Verilog 

simulations need to be fixed-time step models; they need to be discrete-time systems that 

model continuous-time behavior. The DPI-based B-models generated by MATLAB/Simulink are 
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dynamic linked library (DLL) modules created from fixed-time step MATLAB System objects.  

They are integrated into the Verilog simulation by triggering their execution based on periodic 

events, like a rising clock edge or a time-based trigger.  The exception is that a stateless, purely 

combinatorial design is not sensitive to time and can be triggered to execute on any input value 

change instead. 

4.4 Enabler: Object-oriented system models 

An object-oriented modeling approach simultaneously meets both requirements: the interface 

can be defined early in the design process, and the internals of the A-model can change as the C-

model matures. An object-oriented approach also allows one to encapsulate the required fixed 

time-step solver into the model itself, which also enables selection of the accuracy of the 

model’s solver depending on its usage: low-precision functionality for connectivity-only tests, 

and higher-precision functionality for link calibration validation, link bring-up, or system 

functionality tests. 

The next section demonstrates the process of generating a B-model from an object-oriented 

CTLE A-model. This A-model will be subsequently refined by using C-model simulation results to 

refine the internals of the A-model to represent the simulated C-model behavior more faithfully. 

5 B-Model Generation: Behavioral CTLE 

The CTLE is a common analog block used in SerDes systems; it provides high-frequency 

amplification and low-frequency attenuation to counteract the channel’s high-frequency 

attenuation. The CTLE may consist of multiple stages and may also provide broad-band 

amplification via a variable gain amplifier (VGA). For simplicity, this paper will be limited to 

constructing a B-model of a single-stage CTLE; however, the approach and steps can be easily 

extended to modeling a multi-stage CTLE. 

During architectural exploration, the CTLE may be defined based on guidance from the channel 

operating margin (COM) reference model [1,2], which specifies only its frequency domain 

response, as shown in Fig. 4(a). The COM-specified CTLE supports a programmable (tunable) 

frequency response, allowing for control of the amount of high-frequency boost applied to the 

   
 (a) (b) 

Fig. 4 - (a) CTLE frequency response is defined by the peak frequency (ωp1) and the boost amplitude 

(A0). (b) Simplified CTLE model with boost + VGA stage and digital controls. 
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incoming signal. However, the C-model may be further specified to also control the location of 

the mid-band zero, and potentially offer additional controls as well. 

A conceptual B-model block diagram for the CTLE is shown in Fig. 4(b), wherein the applied 

input is first summed with the expected input-referred circuit noise, as well as the expected 

input-referred differential offset. The resulting signal is then passed through a controllable 

frequency-domain filter, which represents the small-signal (AC) response of the filter. The filter 

is then followed by a VGA, before being subjected to a limiting amplifier that models the 

expected large-signal compressive behavior of the CTLE. The control signals, which set and 

control the parameters of the CTLE, may need to be first conditioned by a digital interface (for 

example, to convert binary-weighted control signals into thermometer controls). Finally, a 

digital calibration block may be included within the CTLE or offer external observation ports and 

control ports to the CTLE, allowing for trimming of the additive intrinsic differential input offset. 

The A-model that is exported into a B-model, is shown in Fig. 5. The A-model consists of a 

tunable one-stage CTLE, with an expected output-limiting saturating behavior. The tunable CTLE 

stage is modeled using the SerDes Toolbox™ CTLE System Object™, whereas the output swing 

compression is modeled using the saturating amplifier system object. 

 

Fig. 6 - COM CTLE magnitude transfer function: peak boost occurs at 20 GHz and supports DC 

attenuation of 0 to -20 dB. 

 

Fig. 5 - A Simulink® CTLE behavioral model consists of a SerDes Toolbox™ CTLE system object, as 

well as the VGA and saturating amplifier system objects. 
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The CTLE is specified by providing the peaking gain frequency (20 GHz), and the ranges of the DC 

gain and boost: -20 to 0 dB and 0 to 20 dB, respectively. The resulting gain and phase responses 

are shown in Fig. 6. 

The behavioral saturating amplifier, which models the expected finite output swing of the C-

model due to voltage headroom limitations, is specified by its linear gain and one-sided peak 

swing, 1 V/V and 0.4 V, respectively. The resulting non-linear distortion applied to the CTLE 

output is shown in Fig. 7. 

5.1 Interface definition 

As illustrated in Fig. 3, the interface definition comes directly from the C-model: interfaces are 

defined early in the project cycle, based on the design specifications and the resulting A-model-

driven design hierarchy. However, the A-model’s interface is unlikely to match the C-model’s 

interface exactly. For example, the CTLE C-model may have differential inputs and outputs, 

whereas the A-model may use single-ended inputs and outputs that represent the C-models 

differential signal magnitudes, as in this paper. 

Discrepancies between a C-model’s interface and the simplified A-model interface can be 

reconciled by using an A-to-B-model interface gasket. This gasket, as illustrated in Fig. 8, can 

perform the requisite differential-to-single-ended signal conversion at the input and single-

ended-to-differential conversion at the output. Random, or programmable, offset can also be 

added by the interface gasket into the signal path, as can the offset calibration compensation. 

The core functionality of the CTLE (ostensibly the difficult-to-model component) is generated 

directly from the A-model. The next section describes how the various pieces of the B-model are 

automatically connected during the A-to-B-model export flow. 

 

Fig. 7 – Saturating amplifier’s DC input-to-output transfer function. 
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5.2 Missing A-model functionality 

The A-model may purposely omit low-level functionality, such as calibration circuits. These 

circuits exist in the C-model and provide sensing and actuating points that may be driven 

externally or by a self-contained calibration circuit. For example, in the CTLE B-model shown in 

Fig. 4(b), the digital calibration block is used to compensate for the input offset of the CTLE. This 

calibration circuit runs upon power-up and has no effect on the signal processing path after the 

input offset is compensated, making it immaterial and invisible to the A-model. However, the B-

model may need to capture this behavior because start-up calibration is a potential top-level 

sign-off simulation. 

Additional functionality necessary for the B-model can also be incorporated by the A-to-B-model 

gasket. For example, the digital calibration block and associated DAC and comparator will also 

be included in the overall CTLE B-model by the A-to-B-model gasket. The functionality of the 

DAC, calibration engine, and sampler can come from a separate A-to-B-model export flow by 

directly pulling in synthesizable RTL, or by resorting to low-level SystemVerilog modeling. 

 

Fig. 8 - CTLE B-model block diagram.  Notice that the core analog functionality is encapsulated by 

the A-model. A reusable SystemVerilog gasket provides B-to-A model interfacing while pulling in 

additional support modules that are not present in the A-model: such as the clocked comparator, 

digital calibration engine, and DAC.   
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The digital calibration feedback loop consists of a clocked comparator running at a locally 

generated frequency, a digital calibration engine, and a DAC to apply the offset to the CTLE 

input. When the calibration feedback loop is enabled and the inputs to the CTLE are shorted, the 

calibration engine integrates the sampled CTLE output and drives the loop in feedback to cancel 

out any input offset. 

For the example CTLE, the digital calibration engine is described in synthesizable RTL, and as 

such can be directly included into the B-model as a module. The digital calibration engine details 

are shown in Fig. 9. This engine is enabled by the cal_en signal. The engine consists of a 1st-

order integrator that integrates the ±1 clocked comparator outputs into a multi-bit digital value. 

The upper MSBs of this digital value in turn drives the offset compensation DAC. When the 

offset is nullified, the counter value will dither around a steady-state value, at which point the 

offset should be within the single LSB resolution of the DAC. 

For the CTLE example, the DAC is emulated in the B-model using a constant scaling factor, which 

converts the 2’s compliment binary number conversion into an offset compensation voltage. 

However, the DAC could also have been modeled using an exported DAC MATLAB or Simulink 

model. With all of the B-model components accounted for, let us turn our attention towards the 

model export flow. 

 

Fig. 9 – Digital offset calibration engine. When enabled, the sampled (high/low) CTLE differential 

output is digitally integrated using an N-bit up/down counter. The upper M bits of the counter are 

used to drive a DC offset DAC, which provides a constant DC offset into the CTLE that compensates 

for its intrinsic offset. 
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5.3 Model export 

The model is exported using the Simulink export flow [6]: via HDL Verifier™ or Simulink® Coder™ 

and HDL Verifier™. This flow allows for the use of a Verilog export template, which can be 

customized to call the exported DLL as required. The template used for export is shown in Fig. 

10(a): it specifies that the CTLE DLL is to be called periodically, as set by the time_step 

parameter. The CTLE is initialized upon simulation start. The CTLE model’s update and output 

functions are called every sample interval, which is a fraction of the symbol interval. The update 

function takes the current input as its argument, and the output function provides the 

corresponding output for the sample interval step. The resulting exported CTLE DPI model 

wrapper is shown in Fig. 10(b).  

// CTLE DPI model 
 
`timescale 1s / 1ps 
 
module %<FileName> ( 
    %<PortList> 
); 
 
localparam time_step = 1/28e9/32; 
 
%<ObjHandle> 
%<ImportInitFunction> 
%<ImportOutputFunction> 
%<ImportUpdateFunction> 
%<ImportSetParamFunction> 
 
initial begin 
  %<CallInitFunction> 
  forever begin 
    #(time_step)  
    %<CallUpdateFunction> 
    %<CallOutputFunction> 
  end 
end 
 
endmodule 

// CTLE DPI model 
 
`timescale 1s / 1ps 
 
module CTLE_dpi ( 
 
/* Simulink signal name: 'ctle_in' */ 
input real ctle_in , 
/* Simulink signal name: 'cfg_sel' */ 
input byte unsigned cfg_sel , 
/* Simulink signal name: 'gain' */ 
input real gain , 
 
/* Simulink signal name: 'out' */ 
output real out 
); 
 
localparam time_step = 1/28e9/32; 
 
chandle objhandle; 
import "DPI-C" function chandle DPI_CTLE_initialize(chandle existhandle); 
import "DPI-C" function void DPI_CTLE_output(input chandle objhandle, 
/*Simulink signal name: 'ctle_in'*/ 
input real ctle_in, 
/*Simulink signal name: 'cfg_sel'*/ 
input byte unsigned cfg_sel, 
/*Simulink signal name: 'gain'*/ 
input real gain, 
/*Simulink signal name: 'out'*/ 
inout real out); 
import "DPI-C" function void DPI_CTLE_update(input chandle objhandle, 
/*Simulink signal name: 'ctle_in'*/ 
input real ctle_in, 
/*Simulink signal name: 'cfg_sel'*/ 
input byte unsigned cfg_sel, 
/*Simulink signal name: 'gain'*/ 
input real gain); 
 
 
initial begin 
  objhandle = DPI_CTLE_initialize(objhandle); 
  forever begin 
    #(time_step) 
    DPI_CTLE_update(objhandle, 
ctle_in, cfg_sel, gain); 
    DPI_CTLE_output(objhandle, 
ctle_in, cfg_sel, gain, out); 
  end 
end 
 
endmodule 

(a) (b) 

Fig. 10 – B-model (a) export template and the resulting (b) SystemVerilog DPI model generated. 



 

Information Classification: General 

The CTLE model wrapper used is shown in Fig. 11. This A-to-B-model wrapper provides the 

require A-to-B-model signal conditioning and instantiates the C-model components that may not 

be present in the A-model. This wrapper provides all the functionality outside of the blue box in 

Fig. 8. Having generated the B-model from the A-model, we now show that the B-model 

behavior is correlated to the A-model and that the B-model can be used to verify the operation 

of the digital offset calibration engine. 
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5.4 A-to-B correlation results 

The Verilog simulator supports only transient simulations; therefore, any comparison of A-to-B-

model behavior must be based on transient simulations. As the CTLE is a linear filter, it can be 

fully characterized using an impulse response. A step response works equally well and has the 

added benefit of being easier to simulate in a fixed-step simulator. 

 

A step response is applied to both the A- and B-models in their respective simulators. The 

resulting family of step responses is shown in Fig. 12(a) for the A-model and in Fig. 12(b) for the 

`timescale 1s / 1fs 
 
module ctle #( 
    parameter offset = 0.0, 
    parameter cm = 0.5 
) ( 
    input arst_b, // Asynchronous reset 
    input cm_clk, // common-mode compensation clock 
    input cm_cal_en, // common-mode calibration enable 
    input real inp, // CTLE differential input + 
    input real inm, // CTLE differential input - 
    input byte unsigned boost, // boost setting 
    output real outp, // CTLE differential output + 
    output real outm  // CTLE differential output - 
); 
 
    real in, offset_comp, out; 
    reg out_q; 
    wire signed [7:0] offset_comp_dig; 
 
    always @(*) begin: CTLE_step 
        offset_comp = offset_comp_dig * 0.125/128; // offset DAC model 
        in = inp - inm + offset - offset_comp; 
 
        outp = cm + out/2; 
        outm = cm - out/2; 
    end 
 
    // Clocked comparator 
    always @(posedge cm_clk) 
            out_q <= cm_cal_en? outp > outm: 1'b0; 
 
// CTLE digital offset calibration 
ctle_cm_cal #(.out_width(8), .int_width(12)) ctle_cm_cal (.arst_b(arst_b), .clk(cm_clk), 
    .en(cm_cal_en), .sense(out_q), .comp(offset_comp_dig)); 
 
// CTLE B-model core (based on exported A-model) 
CTLE_dpi ctle_core(.ctle_in(in), .cfg_sel(boost), .out(out)); 
 
endmodule 

Fig. 11 – CTLE B-to-A-model gasket, which provides all the A-model missing components and 

the input and output interface translation required for the B-model illustrated in Fig. 8. 
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B-model. Notice that the two sets of curves are well-matched. The position of the 0.2-V input 

step is denoted by the dashed red line in both plots. 

 

The step responses shown in Fig. 12 exercise the filter part of the CTLE, and the output swing 

compression modelled by the saturating amplifier can be seen by looking at low- and high-

amplitude PRBS patterns. A scaled PRBS-7 input pattern is applied to the A- and B-model CTLEs, 

and the peak amplitude of the PRBS pattern is either 100 or 400 mV. The output waveforms for 

the A- and B-model CTLEs are shown in Fig. 13 for (a) minimum and (b) maximum CTLE boost 

settings. The top plots show the A- and B-model transient responses for a 100-mV PRBS 

sequence, whereas the bottom plots show the response for a 400-mV PRBS sequence. In all four 

cases, the B-model output correlates exactly with the A-model output; thus, the B-model is well-

correlated to the A-model. 

 

 
 (a) (b) 

Fig. 12 - Step responses as measured in (a) Simulink for the A-model and (b) Verilog for the B-model. 

                  

         

 
    
    
    
    
    
    
    
    
    
   

 
 
 
   
 
 
 

  
(a) (b) 

Fig. 13 – Verilog and Simulink output waveforms for behavioral CTLE driven by a PRBS waveform 

with a (top) 100-mV and (bottom) 400-mV amplitude for (a) minimum and (b) maximum boost 

settings. 
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5.5 Validating digital calibration engine using B-model 

Early access to B-models provides another benefit to mixed-signal designs: the ability to left-

shift the development and validation of closed-loop analog-digital control systems. The B-model 

CTLE example generated in the previous section, which is based on the COM specification of the 

required CTLE behavior, allows for the early testing of the digital offset compensation controller. 

In fact, the initial offset compensation controller developed for the CTLE example in this paper 

initially had a design flaw – a signal polarity inversion – that was found and rectified using the B-

model version of the CTLE. Hence, not only can development of digital assist be left-shifted, but 

so too can the development of testbenches and pass/fail criteria.  

The closed-loop behavior of the digital offset compensation controller is shown in Fig. 14. The 

top part of the figure shows the differential outputs of the B-model CTLE converging towards 

the output common mode voltage of 0.5 V. The bottom portion of Fig. 14 shows the differential 

output voltage of the CTLE, and the compensation DAC output. 

Although the CTLE and associated digital offset cancellation controller is a rather simple 

example, and the digital control loop is straightforward, the B-model generation flow can be 

applied to much more complicated applications. Moreover, as the C-model matures, the A-

model can be refreshed with up-to-date simulation characterizations, allowing for the exact 

same export flow to be re-used to generate a more accurate B-model. In the next section, a C-

model version of the CTLE is developed and simulated using a circuit simulator, and the 

simulation characterizations are used to refine the A-model, and in turn regenerate an updated 

B-model. 

 

Fig. 14 – The digital offset calibration engine showing (top) the differential output of the CTLE, and 

(bottom) measured differential output voltage (blue) and DAC output voltage applied to compensate 

for the offset (red). 
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6 Circuit-Accurate A- and B-Models 

The example CTLE C-model is intended to illustrate the process of using C-model simulations to 

refresh the A-model, and in turn automatically update the B-model as well. The CTLE design 

presented here is a simplified embodiment of a manufacturable CTLE. This simplified CTLE 

circuit is used to show (1) some of the required simulations analog designers need to run to 

characterize the CTLE; (2) how data from these simulations is processed and used to refresh the 

A-model; and (3) how the updated A-model can then be exported into a circuit-correlated B-

model. We begin with an overview of the CTLE analog circuit. 

6.1 CTLE analog circuit 

The CTLE topology used here is the resistor-capacitor source-degenerated differential amplifier, 

shown in Fig. 15. The source degeneration network provides control of the boost frequency and 

magnitude: the capacitor sets the frequency of the zero, and the resistor sets the DC 

attenuation. This design is a simplified circuit implementation of a CTLE; the differential pair 

transistors serve as the main circuit impediments allowing us to showcase the effects of (1) the 

limited voltage headroom, which manifests itself as differential signal compression; (2) the high-

frequency gain drop due to parasitic transistor capacitances; and (3) the measurable differential 

offset due to transistor mismatch.  Next, the CTLE circuit is characterized within a circuit 

simulator.  

 

Fig. 15 - Simplified CTLE circuit. 
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6.2 Required analog simulation data 

To convert the CTLE A-model from a specification-based model to a more circuit-representative 

model requires that the C-model be characterized using a circuit simulator. The set of 

measurements required to characterize the CTLE are very similar, if not exactly the same, to the 

set of simulations an analog designer would use to evaluate the circuit performance, including: 

• an AC (small signal) frequency-domain analysis of the circuit’s input-to-output 

transfer function 

• a DC (large signal) voltage-based analysis of the circuit’s input-to-output transfer 

function 

• a Monte-Carlo analysis of the circuit’s differential output, given a 0-V common-

mode centered input. 

The simulated AC response of the C-model is shown in Fig. 16(a) for all boost settings. The 

measured C-model response differs from the COM-like A-model response shown in Fig. 6: the 

desired peaking frequency is the same, but the boost bandwidth is wider. In this case, this 

discrepancy is intentional to highlight the fact that a C-model implementation may not be able 

to exactly match the expected (specified) behavior prescribed by the A-model. 

The C-model’s DC transfer characteristics illustrate the input- or output-limiting (compressive) 

behavior of the circuit; that is, the range of input or output voltage that causes the circuit to 

depart from its desired linear behavior. The simulated input-limiting behavior is shown in Fig. 

16(b) for all boost settings.  

 

Manufacturing variation, including random transistor threshold voltage variation, will cause the 

manufactured CTLE C-model to have a finite input-referred offset. Left uncompensated, this 

input-referred offset will be reflected in the output of the CTLE as a differential DC voltage, 

which can result in uncompensated residual ISI. Histograms for the distribution of the simulated 

C-model input-referred offset are shown in Fig. 17 for the extreme boost settings. Notice that 

 
 

(a) (b) 

Fig. 16 - Circuit measured CTLE (a) boost-dependent gain and phase response, and (b) input-limiting 

non-linearity. 
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the input-referred offset is higher for the high boost setting, as the mismatch in the tail current 

transistors has a larger negative impact than in the low boost case. In the next section, we will 

process the simulation measurements to make the A-model more representative of the 

measured C-model behavior. 

6.3 C-model driven A-model refresh 

Once data from C-model characterization becomes available, the A-model can be updated to 

better reflect the true circuit behavior. The specification-based A-model, shown in Fig. 5, is 

output-swing-limited: the saturating amplifier is at the output of the CTLE filter. However, the 

DC analysis (Fig. 16(b)) of the C-model showed that the input swing limits linearity. Moreover, 

the input limitation is boost-dependent. These changes are reflected in the transposition of the 

CTLE filter and saturating amplifier in Fig. 18. Furthermore, the measured DC transfer curves 

(Fig. 16(b)) are specified as the input-to-output transfer curves to be used by the A-model 

saturating amplifier. Next, we describe the method used to update the CTLE A-model. 

Updating the A-model of the CTLE frequency-dependent behavior based on the measured C-

model behavior is done in two steps: 

1. Determining a rational fit for the measured AC data, and 

2. Updating the A-model CTLE to use the updated gain, pole, and zero values. 

 

Fig. 18 – Circuit-simulation-refreshed CTLE model – note that the non-linearity is at the input and 

that the nonlinearity and CTLE are based on simulation measurements.  

    

  

            

   

            

 

  

 

       

 

   

          
         

  

            

   

  
(a) (b) 

Fig. 17 – Measured CTLE input mismatch for (a) minimum and (b) maximum boost settings. 
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The family of measured C-model CTLE AC responses are approximated by rational functions to 

determine a set of poles and zeros for each CTLE boost setting [3-5]. Although several 

algorithms exist for rational approximation, we have found that CTLE responses are particularly 

well-suited to be fit by the AAA algorithm because this approach minimizes errors by a greedy 

selection of support points that avoid exponential instabilities [5]. The resulting rationally fitted 

gain-pole-zero (GPZ) matrix is used to configure the A-model CTLE. 

 

We will now show that by leveraging just two standard analog simulation results, we have 

drastically increased the representativeness of the A-model. Different circuits may require 

different types of analog simulations; however, these simulations are typically performed as 

part of C-model validation activities. The complexity of the C-model characterization simulations 

can be increased for increased A-model fidelity. Furthermore, process corner support can also 

be added via a model parameter. Above all, the representativeness of the resulting A-model can 

be much better matched in MATLAB and Simulink than is possible via SystemVerilog language 

constructs. Next, we show that the transient A-model behavior correlates well with the C-model 

behavior. 

6.4 Correlation between circuit and system model 

The accuracy of the circuit-representative A-model can be evaluated using transient test signals 

that exercise both the A- and C-models. The captured C-model waveforms and the 

corresponding A-model waveforms for an input PRBS-7 sequence are shown in Fig. 19. The A- 

and C-models are exercised using 100- and 400-mVP signal swings for the input PRBS waveform, 

and the CTLE is configured for minimum or maximum boost. Note that the A- and C-model 

output waveforms are very well-correlated. Discrepancy in the 400-mVP high-boost A-model 

output is due to the CTLE being both input- and output-limited. Having shown that the A- and C-

models correlate, we will now re-export an updated B-model. 

  
(a) (b) 

Fig. 19 – 100- and 400-mVP circuit-simulated and Simulink model PRBS pattern response waveforms 

for (a) minimum and (b) maximum boost settings. 

                            

    

 

   

 
 
   

 
 
  
 
 
 

       

        

                            

         

    

 

   

 
 
   

 
 
  
 
 
 

       

        

                            

    

 

   

 
 
   

 
 
  
 
 
 

       

        

                            

         

    

 

   

 
 
   

 
 
  
 
 
 

       

        



 

Information Classification: General 

6.5 Automatic model refresh 

The exact same flow used for exporting the COM-based CTLE model is used to update the B-

model. No changes are needed to the CTLE export template nor the A-to-B-model interface 

gasket; the only action needed is to re-generate the DLL from Simulink using the updated A-

model. The A-to-B-model transient correlation plots for the updated A- and B-models is shown 

in Fig. 20; there is no apparent difference between the two model outputs. 

7 Conclusion 

This paper demonstrated a methodology for left-shifting SerDes mixed-signal validation, by 

leveraging early A-models along with defined C-model interfaces to generate B-models that can 

be used for analog blocks in mixed-signal simulations. As C-models mature and are characterized 

by analog simulations, the simulation data is used to update and re-align the A-models to 

reflect the C-model behavior more accurately. This flow is independent on C-model completion; 

in fact, the process of C-model recharacterization and A-model refresh can be repeated many 

times, and at each step an up-to-date B-model is automatically available for mixed-signal 

simulations. Unlike typical B-model generation approaches, which rely on human transcription 

of functionality or require completed C-models, the approach shown here does not require 

additional overhead: no overhead on top of the effort required for system-level trade-off 

analysis using A-models during a SerDes development cycle. The early access to B-models based 

on A-models allows for the left-shift of the SerDes validation effort. 

  
(a) (b) 

Fig. 20 – Verilog and Simulink output waveforms for circuit-representative CTLE driven by a PRBS 

waveform with a (top) 100-mV and (bottom) 400-mV amplitude for (a) minimum and (b) maximum 

boost settings. 
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