

GENERATION OF A DVB-S SIGNAL FOR TESTING A RECEIVER 30TH MAY 2017

Gaston LEVANNIER

DGA-MI BRUZ

Telecommunications Division

INTRODUCTION

- Minister of Defence needs Data Links for present & future UAV (Unmanned Aircraft Vehicle)
 - For Uplinks (low data rates for Command and Control)
 - Downlinks (high data rates for Telemetry from payload and different sensors).
- For military applications, interoperability is mandatory and is made possible by the use of STANAGs.
 - Current STANAG for downlinks is STANAG 7085 based on the DVB-S waveform (digital transmission of TV by satellite with MPEG-2 format – 1993)

INTRODUCTION

- DGA-MI has to validate the STANAG 7085 compliance (physical layer) for equipment developed by a contractor
- First step: the test bench must comply with the STANAG 7085
 - Possible solutions:
 - Use a DVB-S Transmitter: not available on our site, too long to buy a new DVB-S equipment
 - Develop an application with MATLAB (the cheapest and fastest way)
 - Complete STANAG 7085 simulation including transmit and received parts.

ARCHITECTURE OF THE BENCH

30/05/2017

DEVELOPMENT WITH MATLAB

Our application was developed with MATLAB

 Need to add specific functions for the scrambling/de-scrambling functions in the DVB-S

A second application was developed with Simulink

- Comparison of the outputs at different levels on the Transmit side (scrambling, encoder, interleaving, QPSK modulator) → OK
- Computation of the performances using BER → OK
 - close to the specification in DVB-S by ETSI

BLOCK DIAGRAM OF THE RETURN LINK

Transmit side: idem to DVB-S

MINISTÈRE DE LA DÉFENSE

WAVEFORM PERFORMANCE

Performance in MATLAB

 BER with AWGN and spectrum for a 2 Mbps link

TEST OF DVB-S COMPLIANCE

- Transmit part simulation generates a real signal with a VST (Vector Signal Transceiver) and LabVIEW
 - VST is able to generate 'Real Time' RF signal in L band to the DVB-S receiver
- Advantages of VST instrument:
 - can be used as a Vector Signal Generator (VSG) to generate RF signals as well as a Spectrum Analyzer (ASA)
 - It is fitted with a programmable FPGA. The PXIe-5644R from NI has been used.

TEST OF DVB-S COMPLIANCE

- First solution: emulating the MATLAB code within LabVIEW and using a USRP board to generate the signal in L Band (1 GHz)
 - MATLAB code is encapsulated in a LabVIEW simulation (no modification but the inputs/outputs)
 - The VST generates 'Real Time' RF signal to the DVB-S Rx
 - Feasible only with a MATLAB script (not with Simulink)
 - Constraints:
 - some limitations in terms of computation load and so in data rate.
 - constraints on the limited choice of the sampling frequency with USRP

OVERVIEW OF THE TEST WITH THE BENCH

TEST WITH A VST EQUIPMENT (NI)

Second solution:

• MATLAB file of complex (I,Q) signals generated and then loaded in LabVIEW as input file (No real time at this level).

Transmit part simulation generates (I,Q) complex samples in a file

- Step 1: Easy with MATLAB with a .mat file
- Step 2: the .mat file feeds the VST interfaced with LabVIEW
 - VST generates 'Real Time' RF signal in L band to the DVB-S receiver

TEST WITH A VST

- GUI developed with GUIDE (in MATLAB) to generate the .mat file of (I,Q) samples
 - Quick to develop and convenient to use

TEST WITH A VST EQUIPMENT (NI)

- Then with LabVIEW + VST, we generated in real time a RF signal at 2 Mbps
 - signal sent to our DVB-S receiver at the required data rate
 - the synchronization of the DVB-S demodulator in the test bench receiver was achieved successfully (using the SYNC symbols of DVB-S: LED Rx in GREEN)
- Further work: to test the data bits and the protocol layer

CONCLUSION (1)

- MATLAB and Simulink are convenient tools to build signal generators for civil standards and STANAGs
 - Easy and quick to develop and modify
 - Easy to add specific and custom-coded functions
 - Capability to add custom-code functions in C/C++ if required
 - Communications with measurement equipment very easy with MATLAB

CONCLUSION (2)

- MATLAB and Simulink provide an easy and fast capability to simulate, generate and test waveforms
- Capability to test these waveforms with new electronic boards and equipment (USRP, VST, ...)
 - Use of the power of the FPGA programmable by the user
 - Increases the performance in terms of processing, data rate.

Thank you for your attention!

Questions?

