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Safety-Critical Model-Based Design Workflow
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Requirements Process for Model-Based Design

� Functional, operational, and safety requirements
� Exist one level above the model
� Models trace to requirements

� Requirements validation - complete and correct
� Simulation is a validation technique 
� Traceability can identify incomplete requirements
� Model coverage can identify incomplete requirements

� Requirements based test cases
� Test cases trace to requirements

Requirements

Validate
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Simulation example – controller and plant
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Requirements trace example – view from 
DOORS® to Simulink
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Requirements trace example – view from 
Simulink to DOORS
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Requirements based test trace example – view 
from Simulink Signal Builder block to DOORS
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Model coverage report example
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Requirements Process take-aways

� Early requirements validation
� Eliminates rework typically seen at integration on 

projects with poor requirements

� Early test case development
� Validated requirements are complete and verifiable 

which results in well defined test cases

� Requirements management and traceability
� Requirements management interfaces provide 

traceability for design and test cases

Requirements

Validate
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Design Process for Model-Based Design

� Model-Based Design
� Create the design - Simulink and Stateflow®

� Modular design for teams - Model Reference
� Model architecture/regression analysis - Model 

Dependency Viewer
� Documented design - Simulink Report Generator
� Requirements traceability using Simulink Verification 

and Validation™
� Design conforms to standards using Model Advisor

Requirements
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Trace:
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Model Advisor



11

® ®

Example detailed design including model 
reference and subsystems

Subsystem Reference Model

Top Model
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Model dependency viewer
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Example Model Advisor report
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Design Verification for Model-Based Design

� Requirements based test cases
� Automated testing using SystemTest™ and Simulink 

Verification and Validation
� Traceability using Simulink Verification and Validation

� Robustness testing and analysis
� Built in Simulink run-time diagnostics
� Formal proofs using Simulink Design Verifier™

� Coverage Analysis
� Verify structural coverage of model
� Verify data coverage of model

Requirements

Model

Simulink
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Verify:
SystemTest
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SystemTest for requirements based testing



16

® ®

SystemTest – example report
Data Plotting and expected

results comparisons

Summary of results
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Signal Builder and Assertion Blocks
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Model coverage report example – signal ranges
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Simulink Design Verifier – Coverage Test

Generated Test Cases

Model
Test Report
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Simulink Design Verifier – Objective Test

Generated Test Cases

Model with Constraints and Objectives
Test Report
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Simulink Design Verifier – Property Proving

Property to be proven

Model with Assumption and Objective
Report
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Design Process take-aways
� Modular reusable implementations

� Platform independent design
� Scalable to large teams

� Consistent and compliant implementations
� Common design language 
� Automated verification of standards compliance

� Efficient verification process
� Develop verification procedures in parallel with design
� Coverage analysis early in the process
� Automated testing and analysis Requirements

Model

Simulink
&

Stateflow
Trace:
RMI

Verify:
SystemTest

SLDV Property Proving
Model Coverage

Conformance:
Model Advisor
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Coding Process for Model-Based Design

� Automatic code generation
� Real-Time Workshop Embedded Coder

� Traceability
� HTML Code Traceability Report 

� Source code verification
� Complies with standards using PolySpace MISRA-C®

checker
� Accurate, consistent and robust using PolySpace™

verifier Model

Source Code

Real-Time Workshop
Embedded coder Conformance:

PolySpace Products

Trace:
Model/Code Trace Report
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dependent models rebuilt

model changed and rebuilt

Incrementally Generate Code

� Incremental code generation 
is supported via Model 
Reference

� When a model is changed, 
only models depending on it 
are subject to regeneration 
of their code

� Reduces application build 
times and ensure stability of 
a project’s code

� Degree of dependency 
checking is configurable
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Add Links to Requirements

Requirements appear in the code
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Code to Model Trace Report
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Compliance history of generated code
• Our MISRA-C test 
suite consists of 
several example 
models

• Results shown for 
most frequently
violated rules

� Improving MISRA-C compliance with each release, e.g.
� Eliminate Stateflow goto statements (R2007a)

� Compliant parentheses option available (R2006b) 

� Generate default case for switch-case statements (R2006b)

� MathWorks MISRA-C Compliance Package available 
upon request http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
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Simulink Integration with PolySpace ProductsSimulink Integration with PolySpace Products
Input1Input1
�� EntriesEntries
�� varying from varying from --

500 to 500500 to 500

K1 and K2K1 and K2
�� ConstantsConstants
�� Can be tuned Can be tuned 

from from --297 to 297 to 
303303

Lookup tablesLookup tables
�� Maps, surfaces,Maps, surfaces,

algorithms, algorithms, 
extrapolationsextrapolations

�� Adjusted, tunedAdjusted, tuned

Math operationsMath operations
�� Divide, add, Divide, add, 

min/max, min/max, 
product, product, 
substractsubstract,,
sumsum……
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See results in the modelSee results in the model

�� Change the modelChange the model
�� Generate the production codeGenerate the production code
�� Run PolySpace softwareRun PolySpace software

PolySpace detected an error herePolySpace detected an error here
(after having analyzed the generated code)(after having analyzed the generated code)
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Coding Process takeaways

� Reusable and platform independent source code
� Traceability
� MISRA-C compliance
� Static verification and analysis

Model

Source Code
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PolySpace Products

Trace:
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Integration Process for Model-Based Design

� Executable object code generation
� ANSI® or ISO® C or C++ compatible compiler
� Run-time libraries provided

� Executable object code verification
� Test generation using Simulink Design Verifier
� Capability to build interface for Processor-In-the-Loop 

(PIL) testing
� Analyze code coverage during PIL
� Analyze execution time during PIL
� Analyze stack PIL

Requirements

Model

Source Code

Object Code
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Processor-in-the-Loop (PIL) Verification
- Execute Generated Code on Target Hardware

Embedded Target

Simulink

Plant Model
Algorithm

(Software Component)
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Execution

• on host and target
• non-real-time

Communication via one of

• data link e.g. serial, CAN, TCP/IP
• debugger integration with MATLAB
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Integration Process Takeaways

� Integration with multiple development 
environments

� Test cases and harnesses generated 
automatically

� Efficient processor in-the-loop test capability

Requirements

Model

Source Code

Object Code

Embedded IDE

Verify:
SLDV Test Generation

Embedded IDE Link XXX

Verify:
SystemTest

Embedded IDE Link XXX
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Wrap-up

� Tools to support the entire safety critical development 
process

� Participation on SC-205/WG-71 committee for DO-178C
� Safety-Critical/DO-178B guideline document

� Available to licensed customers with Real-Time Workshop 
Embedded Coder

� Contact Bill Potter (bill.potter@mathworks.com) or Tom Erkkinen 
(tom.erkkinen@mathworks.com) 


