
©
20

08
 T

he
 M

at
hW

or
ks

 L
im

ite
d

® ®

Model-Based Design for Safety-Critical and 
Mission-Critical Applications 

Bill Potter
Technical Marketing
May 2, 2008



2

® ®

Safety-Critical Model-Based Design Workflow

Requirements

Model

Source Code

Object Code

Validate

Simulink®

&
Stateflow®

Trace:
RMI

Verify:
SystemTest

SLDV Property Proving
Model Coverage

Conformance:
Model Advisor

Real-Time Workshop®

Embedded Coder™
Conformance:
PolySpace™ Products

Embedded IDE

Verify:
SLDV Test Generation

Embedded IDE Link XXX

Verify:
SystemTest™

Embedded IDE Link™ XXX

Trace:
Model/Code Trace Report



3

® ®

Requirements Process for Model-Based Design

� Functional, operational, and safety requirements
� Exist one level above the model
� Models trace to requirements

� Requirements validation - complete and correct
� Simulation is a validation technique 
� Traceability can identify incomplete requirements
� Model coverage can identify incomplete requirements

� Requirements based test cases
� Test cases trace to requirements

Requirements

Validate



4

® ®

Simulation example – controller and plant



5

® ®

Requirements trace example – view from 
DOORS® to Simulink



6

® ®

Requirements trace example – view from 
Simulink to DOORS



7

® ®

Requirements based test trace example – view 
from Simulink Signal Builder block to DOORS



8

® ®

Model coverage report example



9

® ®

Requirements Process take-aways

� Early requirements validation
� Eliminates rework typically seen at integration on 

projects with poor requirements

� Early test case development
� Validated requirements are complete and verifiable 

which results in well defined test cases

� Requirements management and traceability
� Requirements management interfaces provide 

traceability for design and test cases

Requirements

Validate



10

® ®

Design Process for Model-Based Design

� Model-Based Design
� Create the design - Simulink and Stateflow®

� Modular design for teams - Model Reference
� Model architecture/regression analysis - Model 

Dependency Viewer
� Documented design - Simulink Report Generator
� Requirements traceability using Simulink Verification 

and Validation™
� Design conforms to standards using Model Advisor

Requirements

Model

Simulink
&

Stateflow

Trace:
RMI

Conformance:
Model Advisor



11

® ®

Example detailed design including model 
reference and subsystems

Subsystem Reference Model

Top Model



12

® ®

Model dependency viewer



13

® ®

Example Model Advisor report



14

® ®

Design Verification for Model-Based Design

� Requirements based test cases
� Automated testing using SystemTest™ and Simulink 

Verification and Validation
� Traceability using Simulink Verification and Validation

� Robustness testing and analysis
� Built in Simulink run-time diagnostics
� Formal proofs using Simulink Design Verifier™

� Coverage Analysis
� Verify structural coverage of model
� Verify data coverage of model

Requirements

Model

Simulink
&

Stateflow

Verify:
SystemTest

SLDV Property Proving
Model Coverage



15

® ®

SystemTest for requirements based testing



16

® ®

SystemTest – example report
Data Plotting and expected

results comparisons

Summary of results



17

® ®

Signal Builder and Assertion Blocks



18

® ®

Model coverage report example – signal ranges



19

® ®

Simulink Design Verifier – Coverage Test

Generated Test Cases

Model
Test Report



20

® ®

Simulink Design Verifier – Objective Test

Generated Test Cases

Model with Constraints and Objectives
Test Report



21

® ®

Simulink Design Verifier – Property Proving

Property to be proven

Model with Assumption and Objective
Report



22

® ®

Design Process take-aways
� Modular reusable implementations

� Platform independent design
� Scalable to large teams

� Consistent and compliant implementations
� Common design language 
� Automated verification of standards compliance

� Efficient verification process
� Develop verification procedures in parallel with design
� Coverage analysis early in the process
� Automated testing and analysis Requirements

Model

Simulink
&

Stateflow
Trace:
RMI

Verify:
SystemTest

SLDV Property Proving
Model Coverage

Conformance:
Model Advisor



23

® ®

Coding Process for Model-Based Design

� Automatic code generation
� Real-Time Workshop Embedded Coder

� Traceability
� HTML Code Traceability Report 

� Source code verification
� Complies with standards using PolySpace MISRA-C®

checker
� Accurate, consistent and robust using PolySpace™

verifier Model

Source Code

Real-Time Workshop
Embedded coder Conformance:

PolySpace Products

Trace:
Model/Code Trace Report



24

® ®

dependent models rebuilt

model changed and rebuilt

Incrementally Generate Code

� Incremental code generation 
is supported via Model 
Reference

� When a model is changed, 
only models depending on it 
are subject to regeneration 
of their code

� Reduces application build 
times and ensure stability of 
a project’s code

� Degree of dependency 
checking is configurable



25

® ®

Add Links to Requirements

Requirements appear in the code



26

® ®

Code to Model Trace Report



27

® ®

Compliance history of generated code
• Our MISRA-C test 
suite consists of 
several example 
models

• Results shown for 
most frequently
violated rules

� Improving MISRA-C compliance with each release, e.g.
� Eliminate Stateflow goto statements (R2007a)

� Compliant parentheses option available (R2006b) 

� Generate default case for switch-case statements (R2006b)

� MathWorks MISRA-C Compliance Package available 
upon request http://www.mathworks.com/support/solutions/data/1-1IFP0W.html



28

® ®

Simulink Integration with PolySpace ProductsSimulink Integration with PolySpace Products
Input1Input1
�� EntriesEntries
�� varying from varying from --

500 to 500500 to 500

K1 and K2K1 and K2
�� ConstantsConstants
�� Can be tuned Can be tuned 

from from --297 to 297 to 
303303

Lookup tablesLookup tables
�� Maps, surfaces,Maps, surfaces,

algorithms, algorithms, 
extrapolationsextrapolations

�� Adjusted, tunedAdjusted, tuned

Math operationsMath operations
�� Divide, add, Divide, add, 

min/max, min/max, 
product, product, 
substractsubstract,,
sumsum……



29

® ®

See results in the modelSee results in the model

�� Change the modelChange the model
�� Generate the production codeGenerate the production code
�� Run PolySpace softwareRun PolySpace software

PolySpace detected an error herePolySpace detected an error here
(after having analyzed the generated code)(after having analyzed the generated code)



30

® ®

Coding Process takeaways

� Reusable and platform independent source code
� Traceability
� MISRA-C compliance
� Static verification and analysis

Model

Source Code

Real-Time Workshop
Embedded coder Conformance:

PolySpace Products

Trace:
Model/Code Trace Report



31

® ®

Integration Process for Model-Based Design

� Executable object code generation
� ANSI® or ISO® C or C++ compatible compiler
� Run-time libraries provided

� Executable object code verification
� Test generation using Simulink Design Verifier
� Capability to build interface for Processor-In-the-Loop 

(PIL) testing
� Analyze code coverage during PIL
� Analyze execution time during PIL
� Analyze stack PIL

Requirements

Model

Source Code

Object Code

Embedded IDE

Verify:
SLDV Test Generation

Embedded IDE Link XXX

Verify:
SystemTest

Embedded IDE Link XXX



32

® ®

Processor-in-the-Loop (PIL) Verification
- Execute Generated Code on Target Hardware

Embedded Target

Simulink

Plant Model
Algorithm

(Software Component)

C
od

e 
G

en
er

at
io

n

Execution

• on host and target
• non-real-time

Communication via one of

• data link e.g. serial, CAN, TCP/IP
• debugger integration with MATLAB



33

® ®

Integration Process Takeaways

� Integration with multiple development 
environments

� Test cases and harnesses generated 
automatically

� Efficient processor in-the-loop test capability

Requirements

Model

Source Code

Object Code

Embedded IDE

Verify:
SLDV Test Generation

Embedded IDE Link XXX

Verify:
SystemTest

Embedded IDE Link XXX



34

® ®

Wrap-up

� Tools to support the entire safety critical development 
process

� Participation on SC-205/WG-71 committee for DO-178C
� Safety-Critical/DO-178B guideline document

� Available to licensed customers with Real-Time Workshop 
Embedded Coder

� Contact Bill Potter (bill.potter@mathworks.com) or Tom Erkkinen 
(tom.erkkinen@mathworks.com) 


