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• Other fields with breakthroughs include

– Speech processing

– Machine translation (e.g. Google Translate)

– Medical diagnosis systems

– Prediction (e.g. weather, earthquakes)

– Autonomy (e.g. self-driving cars)

– Games (Chess, Go etc)

– Art? (literature and paintings)

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural 

algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).
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IMPLEMENTATION

A quick attempt at deep learning

IDEA

• Bird classification

– 11 species from the bird feeder

• Decided to go for MATLAB using

– Deep Learning Toolbox

– Image Processing Toolbox

– Parallel Computing Toolbox for GPU

• Following this example:

– https://se.mathworks.com/help/deeplearning/gs/g

et-started-with-transfer-learning.html

– Using RESNET101

https://se.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
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– Deep Learning Toolbox

– Image Processing Toolbox

– Parallel Computing Toolbox for GPU

• Following this example:

– https://se.mathworks.com/help/deeplearning/gs/g
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– Using RESNET101

• After 10 minutes of coding and 10 hours of

processing on my GPU…
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What about active sonar applications?

• Active sonar

– Transmits known signal

– Receives echo from target and environment

– Processes contacts through beam forming, 

matched filtering, normalisation, and detection

https://elbitsystems.com/pr-new/geospectrum-technologies-to-showcase-their-towed-reelable-active-

passive-sonar-traps-at-cansec-2018/

https://elbitsystems.com/pr-new/geospectrum-technologies-to-showcase-their-towed-reelable-active-passive-sonar-traps-at-cansec-2018/


Classification problem

• High false alarm rates

– Modern high resolution sonars

– Littoral waters

• Cluttered sonar picture

– Difficult to track targets automatically

– Confusing picture for sonar operator

• Conclusion

– Automatic target classification
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Automatic classification – Deep learning
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Berg & Hjelmervik: Classification of

anti-submarine warfare sonar targets 

using a deep neural network. 

OCEANS, Charleston, USA, 2018



NATIII - Sonar Clutter Experiment 2002

• Collaboration between

– FFI (N)

– TNO (NL)

– Thales Underwater Systems (F)

– The navies of NL, F and N

• Performed off the west coast of Norway (in the 

Norwegian Trench)

• Active, Low frequency Towed Array Sonar
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Data

• A few thousand echoes recorded during three different experiments

• The area contained four pipelines (with a total of 242 echoes)

• The echoes were classified semimanually

• Split into three sets:

– Training – 375 pipeline echoes, 525 false alarms

– Validation – 132 pipeline echoes, 144 false alarms

– Test – 73 pipeline echoes, 2784 false alarms

• The test set originated from a different day, at a slightly different location

• The training and validation sets were augmented

– Pipeline echoes copied and mirrored

– Only a fraction of the false alarms were used



Neural network
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Traning and validation

• Implemented i MATLAB Deep learning Toolbox

• Executed on a Nvidia Geforce 980 GPU

• Learning rate 0.01, minibatch size 10

• Stop condition: Performance on validation set decreased

• 10 runs, 7-12 minutes per run

• Results combined by weighted averaging

• Finally: Tested on test set

– Not used in any way during training



Results
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Conclusions

• Deep learning for active sonar target classification shows promise

– Easy to implement in MATLAB

– Too small data set. More augmentation?

– Significantly better results than simply raising the threshold in the detector

• Current/future work:

– We need more training data

• New augmentation techniques

• Synthetic data

– Investigate using data from different levels of processing

• Beam formed

• Multiple pings
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Deep learning with synthetic data

Farge Trening Transfer Test

Blue Synthetic N/A Recorded

Red Synthetic Recorded Recorded

Cyan Recorded N/A Recorded


