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Deep learning applications

« Massive breakthrough for deep learning in recent years
« Particularly convolutional neural network for image classification
applications

— e. g. ImageNet — annual image classification competition
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Deep learning applications

« Massive breakthrough for deep learning in recent years

« Particularly convolutional neural network for image classification
applications

e. g. ImageNet — annual image classification competition

« Other fields with breakthroughs include

Speech processing

Machine translation (e.g. Google Translate)
Medical diagnosis systems

Prediction (e.g. weather, earthquakes)
Autonomy (e.g. self-driving cars)

Games (Chess, Go etc)

Art? (literature and paintings)

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural
algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).
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A quick attempt at deep learning

 Bird classification
— 11 species from the bird feeder
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A quick attempt at deep learning

 Bird classification

— 11 species from the bird feeder
« Decided to go for MATLAB using

— Deep Learning Toolbox

— Image Processing Toolbox ﬁ

— Parallel Computing Toolbox for GPU ‘
* Following this example: MATILAB

— https://se.mathworks.com/help/deeplearning/gs/g
et-started-with-transfer-learning.html

— Using RESNET101
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https://se.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
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 Bird classification
— 11 species from the bird feeder

« Decided to go for MATLAB using
— Deep Learning Toolbox
— Image Processing Toolbox
— Parallel Computing Toolbox for GPU
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Transmission and topography Reception and topography

20 20
What about active sonar applications?  _« o
 Active sonar 2,,0 "
— Transmits known signal 20 20
— Receives echo from target and environment B )
— Processes contacts through beam forming, BF in all directions BF at angle 270 deg
matched filtering, normalisation, and detection 2 e
g 10 o120
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Classification problem

* High false alarm rates ;
— Modern high resolution sonars
— Littoral waters

» Cluttered sonar picture
— Difficult to track targets automatically
— Confusing picture for sonar operator

« Conclusion
— Automatic target classification
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Automatic classification — Classic approach

Sensor data *{ Processing J—» Features Test

uresy
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Machine ..
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Automatic classification — Classic approach

Test

Sensor data Processing Features

1) Hjelmervik & Berg: Automatic target classification for low
and mid-frequency anti-submarine warfare sonars,
OCEANS, Bergen, Norge, 2013

2) Hjelmervik et al: A hybrid recorded-synthetic sonar data
set for validation of ASW classification algorithms, ‘i,@ v
OCEANS, Genova, Norge, 2015 -

3) Stender et al: Assessing the performance of kinematic MaChme Cl f
track features for classification of sonar targets in anti- Learning assliier
submarine warfare, UDT, Lillestram, 2016

4) Berg et al: A Comparison of Different Machine Learning l,
Algorithms for Automatic Classification of Sonar Targets. o ]
OCEANS, Monteray, 2016 Classification

5) Stender et al: Assessing the performance of Signal-to-
noise ratio and kinematic features in varying
environments. OCEANS, Aberdeen, 2017

6) Stender et al: Sensitivity to target behaviour in automatic
classification on kinematic track features. OCEANS,

Kobe, Japan, 2018
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Automatic classification — Deep learning

Sensor data *{ Processing J—> Instances Test

ulured |

V= {

[ |\/|ach|_ne H Classifier J
Learning
|

Classification

Berg & Hjelmervik: Classification of
anti-submarine warfare sonar targets
using a deep neural network.
OCEANS, Charleston, USA, 2018

F FI Forsvarets
forskningsinstitutt



NATIIl - Sonar Clutter Experiment 2002

* Collaboration between
— FFI (N)
— TNO (NL)
— Thales Underwater Systems (F)
— The navies of NL, F and N

« Performed off the west coast of Norway (in the
Norwegian Trench)

« Active, Low frequency Towed Array Sonar
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Processing

 Hydrophone data [Data used for

v

Beamforming training/testing
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Matched filtering
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Processing

Data used for

Beamforming
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Data

« Afew thousand echoes recorded during three different experiments
 The area contained four pipelines (with a total of 242 echoes)

. The echoes w.ere classmed semimanually
Spllt into t e sets
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Neural network
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Traning and validation

* Implemented i MATLAB Deep learning Toolbox

« Executed on a Nvidia Geforce 980 GPU

* Learning rate 0.01, minibatch size 10

« Stop condition: Performance on validation set decreased
« 10 runs, 7-12 minutes per run

« Results combined by weighted averaging

« Finally: Tested on test set
— Not used in any way during training
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Results
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Results

Classification rate

—CNN
—SNR
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Conclusions

» Deep learning for active sonar target classification shows promise
— Easy to implement in MATLAB
— Too small data set. More augmentation?
— Significantly better results than simply raising the threshold in the detector

e Current/future work:
— We need more training data
» New augmentation techniques
» Synthetic data
— Investigate using data from different levels of processing
« Beam formed
» Multiple pings
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Case 1

Deep learning with synthetic data
« Data from NAT3 2002
— Training data set
« 167 false
« 164 true
— Validation data set
» 44 false
* 63 true
— Test data set
« 906 false j|> Test
- 38 true
« Augmented with synthetic data _
— Ca 54000 instances (50% true) Train
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Case 2

)\

Deep learning with synthetic data
« Data from NAT3 2002
— Training data set —
« 167 false
« 164 true
— Validation data set —| Transfer
» 44 false
* 63 true
— Test data set
« 906 false — Test
- 38 true _
« Augmented with synthetic data _
— Ca 54000 instances (50% true) Train
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Deep learning with synthetic data

« Data from NAT3 2002
— Training data set —
« 167 false
164 true

— Validation data set — Train

o 44 false
63 true
— Test data set

Case 3

)\

« 06 false — Test

38 true _

« Augmented with synthetic data
— Ca 54000 instances (50% true)
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Deep learning with synthetic data
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