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Hybrid Vehicle Motor Controls Overview 

Requirements dictate fast algorithm 

execution

• Torque, speed, voltage and fault 

reaction modes
 1000+ Hz fundamental frequency
 500+ Hz current regulator bandwidth

 10 kHz PWM rates for DC voltage 

ripple

• 80 – 100 uSec control loops are 

common



Software Development Process
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• Responsibilities
 Systems: Analyze, derive and specify

 Software: Implement

 Software/Systems/Validation: Verify

• Time consuming and error prone
 Requirements formation, 

implementation and verification are 

too dispersed

 Decoupling of domain knowledge 

from implementation

General Approach



Automatic Code Generation

• Linking of simulation, code development and testing
 Common in 5 – 10 mSec task rates

 Improves testability.

• Implementation responsibility transitions to domain experts

• Potential for time savings
 Faster verification of implementation

 Production hardware can be used for design and detailed problem solving

Benefits

Challenges
• Creating and maintaining easily understood environment and models

• Identifying preferred implementations



Goal

• Requirements focused
 To support Automotive SPICE 

• Directly apply system expertise to implementation
 Create path for high level simulation models to software

• Shorten time between design, implementation and verification steps
 Reduce development time

• Create easy to understand implementations that can be shared among 

teams

• Closely match hand-code throughput efficiency

Develop automatic code generation process for time critical 
tasks



Process: Requirements Derivation / Partitioning Phase

• Verify overall requirements are met

• Establish derived requirements
 Architecture

 System partitioning

 Modes

 Sample rates / control bandwidths

High level design
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Process: Implementation Phase

• Testable requirements
 Inputs / outputs

 Functionality

 Execution rate / order

• Model development
 Best practices

• Documentation
 Model / requirements are 

not sufficient

• Test vectors
 Simulation 

 Requirements verification

Functional Modules



Process: Implementation Phase (Modelling)

• Not all approaches will code with equal efficiency
 Tools have optimization settings

• Consistency of implementation among modules is important for ‘read-

ability’
 Key for sharing among teams

• Peer review process is important to ensure efficient code
 Systems: Implementation meets requirements

 Software: Optimization and problem resolution

• Detailed review of code

• Identification of best practices

Simulation tools offer numerous options for implementation



Process: Implementation Phase (Example 1)
Inefficient Model / Code: Efficient Model / Code:



Process: Implementation Phase (Example 2)

Inefficient Embedded MATLAB code:

Generated code:



Process: Implementation Phase (Example 2)

Inefficient Embedded MATLAB code:

Generated code:



Process: Implementation Phase (Example 2)

Efficient Embedded MATLAB Code:

Generated code:

Hand-coded CustomFuntion.h:



Process: Verification Phase

• Module test vectors
 Verify functionality

• Inputs / internal variables / outputs

• Full model test vectors
 Simulation environment

 Hardware in the loop

• Correct compiler

• Simulate virtual load in processor or 

test bench

Test to verify requirements are met
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Evaluation of Process

• Comparison was made to mature 

hand-code

• Equivalent motor control 

functionality

• Slight penalty in 100 uSec task 

throughput
 1.54 uSec

Verified auto generated software 
was dynamometer tested to 
evaluate performance

Task / Module

Throughput (uSec)

Model Hand-Code

Current Magnitude and Phase 

Process
1.42 1.31

ABC to dq0 Frame 

Transformation
0.76 0.52

Resolver Harmonic Learn 0.48 0.22

Angle Position Determination 0.93 0.84

PI-Current Regulator 7.62 7.51

Torque Mode 4.82 4.72

dq0 Rotating to Stationary 

Frame Transformation
0.94 0.82

Complete 100 uSec Task 65.37 63.83



Summary

• A process is required to ensure efficient implementations

• New roles 
 Software: responsible for auto-coding environment, determining best 

practices, peer reviewing implementations and detailed problem solving

 System: responsible for forming requirements, creating implementations that 

demonstrably meet requirements (test vectors) and following identified best 

practices

• Requirements and models are not sufficient to document implementation

• Automatic code generation should be viewed as a tool to link simulation, 

implementation and verification testing
 Concurrent activities speed the software development process

Structured automatic code generation can be applied to time 
critical tasks
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