
APPLICATION OF AUTOMATIC CODE
GENERATION FOR RAPID AND
EFFICIENT MOTOR CONTROL
DEVELOPMENT
Edward Kelly, James Walters, Cahya Harianto,

and Tanto Sugiarto

Hybrid Vehicle Motor Controls Overview

Requirements dictate fast algorithm

execution

• Torque, speed, voltage and fault

reaction modes
 1000+ Hz fundamental frequency
 500+ Hz current regulator bandwidth

 10 kHz PWM rates for DC voltage

ripple

• 80 – 100 uSec control loops are

common

Software Development Process

Software Construction

Software

Design

Software

Integration Test

Software

Requirements

Analysis

System

Requirements

Analysis

Requirements

Elicitation

Software

Test

System

Integration

Test

System

Test

Product

Release

System

Design

VERIFICATION

VERIFICATION

VERIFICATION

• Responsibilities
 Systems: Analyze, derive and specify

 Software: Implement

 Software/Systems/Validation: Verify

• Time consuming and error prone
 Requirements formation,

implementation and verification are

too dispersed

 Decoupling of domain knowledge

from implementation

General Approach

Automatic Code Generation

• Linking of simulation, code development and testing
 Common in 5 – 10 mSec task rates

 Improves testability.

• Implementation responsibility transitions to domain experts

• Potential for time savings
 Faster verification of implementation

 Production hardware can be used for design and detailed problem solving

Benefits

Challenges
• Creating and maintaining easily understood environment and models

• Identifying preferred implementations

Goal

• Requirements focused
 To support Automotive SPICE

• Directly apply system expertise to implementation
 Create path for high level simulation models to software

• Shorten time between design, implementation and verification steps
 Reduce development time

• Create easy to understand implementations that can be shared among

teams

• Closely match hand-code throughput efficiency

Develop automatic code generation process for time critical
tasks

Process: Requirements Derivation / Partitioning Phase

• Verify overall requirements are met

• Establish derived requirements
 Architecture

 System partitioning

 Modes

 Sample rates / control bandwidths

High level design

HYBRID

CONTROL

MODULE

Torque /

Speed

Regulator

Current

Regulator
Modulator

Reference

Frame

Transformation

Torque

Estimator

POWER SUPPLY

(Battery)

Iqs*

Ids*

Resolver

Signal

Processing

3-Phase Bridge

Iqs

Ids

ELECTRIC

MACHINE

SA,U

SB,U

SC,U

SA,L

SB,L

SC,L

POSITION

SENSOR

θr

ωr

Ias

Ibs

Ics

Operating Mode*

Te* / ωr* Vqs*

Vds*

Te

Vdc

Process: Implementation Phase

• Testable requirements
 Inputs / outputs

 Functionality

 Execution rate / order

• Model development
 Best practices

• Documentation
 Model / requirements are

not sufficient

• Test vectors
 Simulation

 Requirements verification

Functional Modules

Process: Implementation Phase (Modelling)

• Not all approaches will code with equal efficiency
 Tools have optimization settings

• Consistency of implementation among modules is important for ‘read-

ability’
 Key for sharing among teams

• Peer review process is important to ensure efficient code
 Systems: Implementation meets requirements

 Software: Optimization and problem resolution

• Detailed review of code

• Identification of best practices

Simulation tools offer numerous options for implementation

Process: Implementation Phase (Example 1)
Inefficient Model / Code: Efficient Model / Code:

Process: Implementation Phase (Example 2)

Inefficient Embedded MATLAB code:

Generated code:

Process: Implementation Phase (Example 2)

Inefficient Embedded MATLAB code:

Generated code:

Process: Implementation Phase (Example 2)

Efficient Embedded MATLAB Code:

Generated code:

Hand-coded CustomFuntion.h:

Process: Verification Phase

• Module test vectors
 Verify functionality

• Inputs / internal variables / outputs

• Full model test vectors
 Simulation environment

 Hardware in the loop

• Correct compiler

• Simulate virtual load in processor or

test bench

Test to verify requirements are met
0 5 10 15 20 25 30 35 40 45 50

-1

0

1

2

C
m

d
S

ou
rc

e

0 5 10 15 20 25 30 35 40 45 50

-500

0

500

T e* -
C

A
N

 (N
m

)

0 5 10 15 20 25 30 35 40 45 50

-500

0

500

T e* -
In

st
. (

N
m

)

Time (Sec)

0 5 10 15 20 25 30 35 40 45 50
-500

-400

-300

-200

-100

0

100

200

300

400

500

Time (Sec)

I qs*
 (A

)

Desired

Measured

Evaluation of Process

• Comparison was made to mature

hand-code

• Equivalent motor control

functionality

• Slight penalty in 100 uSec task

throughput
 1.54 uSec

Verified auto generated software
was dynamometer tested to
evaluate performance

Task / Module

Throughput (uSec)

Model Hand-Code

Current Magnitude and Phase

Process
1.42 1.31

ABC to dq0 Frame

Transformation
0.76 0.52

Resolver Harmonic Learn 0.48 0.22

Angle Position Determination 0.93 0.84

PI-Current Regulator 7.62 7.51

Torque Mode 4.82 4.72

dq0 Rotating to Stationary

Frame Transformation
0.94 0.82

Complete 100 uSec Task 65.37 63.83

Summary

• A process is required to ensure efficient implementations

• New roles
 Software: responsible for auto-coding environment, determining best

practices, peer reviewing implementations and detailed problem solving

 System: responsible for forming requirements, creating implementations that

demonstrably meet requirements (test vectors) and following identified best

practices

• Requirements and models are not sufficient to document implementation

• Automatic code generation should be viewed as a tool to link simulation,

implementation and verification testing
 Concurrent activities speed the software development process

Structured automatic code generation can be applied to time
critical tasks

Acknowledgement of Support

Disclaimer: “This report was prepared as an account of work sponsored by an agency

of the United States Government. Neither the United States Government nor any

agency thereof, nor any of their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its endorsement, recommendation,

or favoring by the United States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.”

Acknowledgement: “This material is based upon work
supported by the Department of Energy under Award Number
DE-FC26-07NT43121.”

