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Requirements dictate fast algorithm

Hybrid Vehicle Motor Controls Overview

execution

Torque, speed, voltage and fault

reaction modes

= 1000+ Hz fundamental frequency

= 500+ Hz current regulator bandwidth

= 10 kHz PWM rates for DC voltage
ripple
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Software Development Process

Responsibilities

= Systems: Analyze, derive and specify

= Software: Implement

= Software/Systems/Validation: Verify

Time consuming and error prone

= Requirements formation,
implementation and verification are
too dispersed

= Decoupling of domain knowledge e/
from implementation
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Automatic Code Generation

Linking of simulation, code development and testing
= Commonin5— 10 mSec task rates
» |Improves testability.

Implementation responsibility transitions to domain experts

Potential for time savings
» Faster verification of implementation
» Production hardware can be used for design and detailed problem solving

Creating and maintaining easily understood environment and models
ldentifying preferred implementations
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Goal

Requirements focused

» To support Automotive SPICE

Directly apply system expertise to implementation

= Create path for high level simulation models to software

Shorten time between design, implementation and verification steps

= Reduce development time

Create easy to understand implementations that can be shared among
teams

Closely match hand-code throughput efficiency
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Process: Requirements Derivation / Partitioning Phase

- Verify overall requirements are met
- Establish derived requirements

= Architecture

= System partitioning

= Modes

= Sample rates / control bandwidths ‘ rower supeL
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Process: Implementation Phase

Testable requirements

» |nputs / outputs

= Functionality

= Execution rate / order

Model development

= Best practices

Documentation

= Model / requirements are
not sufficient

Test vectors

=  Simulation

» Requirements verification
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Process: Implementation Phase (Modelling)

Not all approaches will code with equal efficiency
= Tools have optimization settings
Consistency of implementation among modules is important for ‘read-
ability’
= Key for sharing among teams
Peer review process is important to ensure efficient code
=  Systems: Implementation meets requirements
= Software: Optimization and problem resolution
» Detailed review of code
» ldentification of best practices
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Process: Implementation Phase (Example 1)
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Process: Implementation Phase (Example 2)

[45
46 - floor index = uint3Z (unfloor index);
a1

Generated code:

[* *f
S* "<33»:1:46" %/
tmp = unfloor index;
if ((unfloor index < 8.388608E+6F) && (unfloor index > -8.388608E+6F)) {
tmp = (unfloor index < 0.0F) ? ceilf(unfloor index - 0.5F) : floorf
(unfloor index + 0.5F):

}

floor index = (uint32 T)tmp:
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Process: Implementation Phase (Example 2)

45

46 - floor index = uint3Z (unfloor index);
a1

Generated code:

/% '<833:1:46' #/]
tmp = unfloor index;
if ((unfloor index < 8.38B60BE+6F) && (unfloor index > -8.3BB60BE+6F)) {
tmp = (unfloor index < 0.0F) ? ceilf(unfloor index - 0.5F) : floorf
(unfloor index + 0.5F);
}

floor_index = (uinc32_T)cmp;
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Process: Implementation Phase (Example 2)

45
468 - flﬂt‘-!l:'_.'l.ﬂd.!k = sonder.ssval ("SingleTolnteageri? 'J'.."I.'I.Ilnn:l.ﬂ_.'l.l'ldti:l=
47

Hand-coded CustomFuntion.h:

#ifndef CustomFunction H
#define CustomFunction H

#include "rtwtypes.h"

#define SingleTolInteger3Z (u) ( (Int32 T) u )

Generated code:

F® "C53>:1:46" =/
fl:ﬂI_iﬁd&x = S:nqleIaInteqerﬂz[unflua:_inﬁe;];
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Process: Verification Phase
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= Simulation environment
= Hardware in the loop
« Correct compiler
« Simulate virtual load in processor or =
test bench
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Evaluation of Process

- Comparison was made to mature
hand-code

- Equivalent motor control
functionality

« Slight penalty in 100 uSec task

throughput
= 1.54 uSec

Throughput (uSec)
Task / Module
Model Hand-Code
Current Magnitude and Phase 1.42 131
Process
ABC to dq0 _Frame 0.76 0.52
Transformation
Resolver Harmonic Learn 0.48 0.22
Angle Position Determination 0.93 0.84
PI-Current Regulator 7.62 7.51
Torque Mode 4.82 4.72
dgO Rotating to Sta_tlonary 0.94 0.82
Frame Transformation
Complete 100 uSec Task 65.37 63.83
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Summary

A process is required to ensure efficient implementations

New roles

» Software: responsible for auto-coding environment, determining best
practices, peer reviewing implementations and detailed problem solving

» System: responsible for forming requirements, creating implementations that
demonstrably meet requirements (test vectors) and following identified best
practices

Requirements and models are not sufficient to document implementation

Automatic code generation should be viewed as a tool to link simulation,

Implementation and verification testing

= Concurrent activities speed the software development process
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