APPLICATION OF AUTOMATIC CODE
GENERATION FOR RAPID AND

EFFICIENT MOTOR CONTROL
DEVELOPMENT

Edward Kelly, James Walters, Cahya Harianto,
and Tanto Sugiarto

Requirements dictate fast algorithm

Hybrid Vehicle Motor Controls Overview

execution

Torque, speed, voltage and fault

reaction modes

= 1000+ Hz fundamental frequency

= 500+ Hz current regulator bandwidth

= 10 kHz PWM rates for DC voltage
ripple

80 — 100 uSec control loops are

common

HCM Battery

Inverter I

DC-DC

Converter

ECM

IC Engine

I

-

l >
™ Sandwich Electrical
Machine (EM) e High Voltage AC Wiring

s High Voltage DC Wiring
— Low Voltage Wiring
Communication Link

DeLLPHII

Software Development Process

Responsibilities

= Systems: Analyze, derive and specify

= Software: Implement

= Software/Systems/Validation: Verify

Time consuming and error prone

= Requirements formation,
implementation and verification are
too dispersed

= Decoupling of domain knowledge e/
from implementation

DeLPHII

Automatic Code Generation

Linking of simulation, code development and testing
= Commonin5— 10 mSec task rates
» |Improves testability.

Implementation responsibility transitions to domain experts

Potential for time savings
» Faster verification of implementation
» Production hardware can be used for design and detailed problem solving

Creating and maintaining easily understood environment and models
ldentifying preferred implementations

DeLPHII

Goal

Requirements focused

» To support Automotive SPICE

Directly apply system expertise to implementation

= Create path for high level simulation models to software

Shorten time between design, implementation and verification steps

= Reduce development time

Create easy to understand implementations that can be shared among
teams

Closely match hand-code throughput efficiency

DeLPHII

Process: Requirements Derivation / Partitioning Phase

- Verify overall requirements are met
- Establish derived requirements

= Architecture

= System partitioning

= Modes

= Sample rates / control bandwidths ‘ rower supeL
ing Mode* x x — e

HYBRID >
CONTROL *
MODULE Tot 7w - i@—> AZE

3-Phase Bridge

PPN
[[l [l [c
Y Yy v Y

Torque / Current
lgs Rzgl?lea(tjor las™ i Vas™ HoEe
| S T o | ¥ ‘
TTransformaﬂon las (- Sstimator [
g
g

¥

LS

\% VUV VUV »
U

DeLPHII

Process: Implementation Phase

Testable requirements

» |nputs / outputs

= Functionality

= Execution rate / order

Model development

= Best practices

Documentation

= Model / requirements are
not sufficient

Test vectors

= Simulation

» Requirements verification

DeLPHII

Process: Implementation Phase (Modelling)

Not all approaches will code with equal efficiency
= Tools have optimization settings
Consistency of implementation among modules is important for ‘read-
ability’
= Key for sharing among teams
Peer review process is important to ensure efficient code
= Systems: Implementation meets requirements
= Software: Optimization and problem resolution
» Detailed review of code
» ldentification of best practices

DeLPHII

Process: Implementation Phase (Example 1)

3

<S=ctor_Num>

Sector_Mum

I)

wds_Stat

Wags_Stat

rth_ Addz
T 1 Frime
rtb Gain3
switch

case 3:
T_1_Prime
break;

case 2:
T_1_Prime
kbreak;

case 4:

T_1_ Prime
break:

case S5:
T_1_ Prime
break:

case 1:
break;

2.

real32 T rtb Gain3;
real32 T rtb_Addz2:

Wds_ Stat — Vas
= Wg=_S5tat

rth_Gain3;

rth_Addz:

rtb_Gain3;

rth_AddZ:

Y

— Wds_Stat;
OF #* Wds_Stcat;
(Sector Hum) {

R SN

T_1_Prime

3
<S=ctor_Mum>
Sector_Num

e S

Vds_Stat

o

Vgs_Stat

switch (Sector MNum) {

case 3:
T_1_Frime
break;

case 2:
T_1_Prime
break;?

case 4:
T_1_ Frime
break:

case 5:
T_1_Prime
break:

case 1:
T_1_Prime
break;

default:
T_1_ Frime
break:

-

s Ml e
i T T *

<Nds_Stat>

5
s st > : > > B TP > Y
T_1_Prime

3 -

: Siae_Star :. P
(e _sar

|
O

¥
o

<\gs_Stat>
“Sds_Stats
“Vgs_Stats

Wds_Stats

2.0F * Wds_Stats:

Wds_Stat

Vos_Stat:

2Z.0F = Wds_Stat:

Vds_Stat

Vogs_Stat

Wogs_ Stat

Wgs_Stat;

Vds_Stat;

Wds_Stat;

+

-
-

+

DeLLPHII

Process: Implementation Phase (Example 2)

[45
46 - floor index = uint3Z (unfloor index);
a1

Generated code:

[* *f
S* "<33»:1:46" %/
tmp = unfloor index;
if ((unfloor index < 8.388608E+6F) && (unfloor index > -8.388608E+6F)) {
tmp = (unfloor index < 0.0F) ? ceilf(unfloor index - 0.5F) : floorf
(unfloor index + 0.5F):

}

floor index = (uint32 T)tmp:

DeLLPHII

Process: Implementation Phase (Example 2)

45

46 - floor index = uint3Z (unfloor index);
a1

Generated code:

/% '<833:1:46' #/]
tmp = unfloor index;
if ((unfloor index < 8.38B60BE+6F) && (unfloor index > -8.3BB60BE+6F)) {
tmp = (unfloor index < 0.0F) ? ceilf(unfloor index - 0.5F) : floorf
(unfloor index + 0.5F);
}

floor_index = (uinc32_T)cmp;

DeLLPHII

Process: Implementation Phase (Example 2)

45
468 - flﬂt‘-!l:'_.'l.ﬂd.!k = sonder.ssval ("SingleTolnteageri? 'J'.."I.'I.Ilnn:l.ﬂ_.'l.l'ldti:l=
47

Hand-coded CustomFuntion.h:

#ifndef CustomFunction H
#define CustomFunction H

#include "rtwtypes.h"

#define SingleTolInteger3Z (u) ((Int32 T) u)

Generated code:

F® "C53>:1:46" =/
fl:ﬂI_iﬁd&x = S:nqleIaInteqerﬂz[unflua:_inﬁe;];

DeLLPHII

Process: Verification Phase

Cmd Source
Ao RN
H

Module test vectors
= Verify functionality 5]
* Inputs / internal variables / outputs °oos e o e e

T - CAN (Nm)
o @
(o] o]

o O O
§

T - Inst. (Nm)
a [
(o] o
O O O

;

Full model test vectors I T T T

Time (Sec)

= Simulation environment
= Hardware in the loop
« Correct compiler
« Simulate virtual load in processor or =
test bench

r r r r r r r r r
5 10 15 20 25 30 35 40 45 50
Time (Sec)

DeLPHII

Evaluation of Process

- Comparison was made to mature
hand-code

- Equivalent motor control
functionality

« Slight penalty in 100 uSec task

throughput
= 1.54 uSec

Throughput (uSec)
Task / Module
Model Hand-Code
Current Magnitude and Phase 1.42 131
Process
ABC to dq0 _Frame 0.76 0.52
Transformation
Resolver Harmonic Learn 0.48 0.22
Angle Position Determination 0.93 0.84
PI-Current Regulator 7.62 7.51
Torque Mode 4.82 4.72
dgO Rotating to Sta_tlonary 0.94 0.82
Frame Transformation
Complete 100 uSec Task 65.37 63.83

DeLLPHII

Summary

A process is required to ensure efficient implementations

New roles

» Software: responsible for auto-coding environment, determining best
practices, peer reviewing implementations and detailed problem solving

» System: responsible for forming requirements, creating implementations that
demonstrably meet requirements (test vectors) and following identified best
practices

Requirements and models are not sufficient to document implementation

Automatic code generation should be viewed as a tool to link simulation,

Implementation and verification testing

= Concurrent activities speed the software development process

DeLPHII

Acknowledgement of Support

Disclaimer: “This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.”

DeLPHII

<L PHI

Innovation for the Real World

